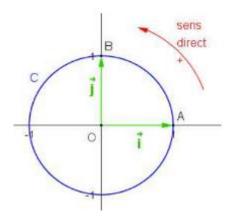
I Enroulement de la droite des réels sur le cercle trigonométrique

1.1 Principe

Définition Cercle trigonométrique

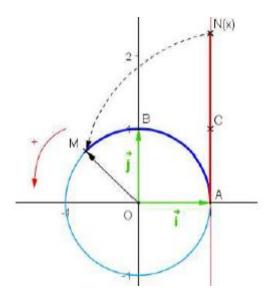
On munit le plan d'un repère orthonormé $(0; \vec{\imath}, \vec{j})$. Le cercle trigonométrique C est le cercle de centre O et de rayon 1, sur lequel on choisit une orientation qui est appelée <u>sens direct</u> ou <u>sens trigonométrique</u> et qui correspond au sens contraire des aiguilles d'une montre.



Définition de l'enroulement

Dans un repère $(0; \vec{\iota}, \vec{j})$, on considère le cercle trigonométrique et une droite (AC) tangente au cercle en A et orientée telle que (A; $\vec{\iota}$,) soit un repère de la droite.

Si on « enroule » la droite autour du cercle, on associe à tout point N d'abscisse x de la droite orientée un unique point M du cercle. La longueur de l'arc \widehat{AM} est aussi égale à la longueur AN.



1.2 Correspondance entre abscisses et angle

La longueur du cercle trigonométrique est égale à 2π . En effet, son rayon est 1 donc $P=2\pi\times 1=2\pi$.

Après enroulement, le point N d'abscisse x sur la droite orientée se trouve en A sur le cercle. Cela correspond à un tour complet.

Ainsi au nombre 2π (abscisse N sur la droite orientée), on fait correspondre un angle de 360° (mesure de \widehat{AOM}).

Par exemple, après enroulement, le point N d'abscisse π sur la droite orientée se trouve diamétralement opposé au point A sur le cercle. Cela correspond à un demi-tour Par proportionnalité, on obtient les correspondances suivantes :

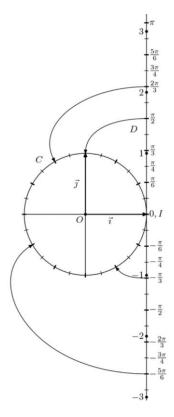
	x	2π	π	$\frac{\pi}{2}$	$\frac{\pi}{3}$	$\frac{\pi}{4}$	$\frac{\pi}{6}$
1	AOM	360°	180°	90°	60°	45°	30°

Définition - Propriété Plusieurs abscisses pour un seul point

- (i) Si M est un point du cercle trigonométrique, tout réel qui lui est associé par le procédé précédent est appelé <u>abscisse curviligne</u> de M.
- (ii) Tout point M du cercle trigonométrique admet une infinité d'abscisses curvilignes distinctes. De plus, si x est l'une d'elles alors les abscisses curvilignes de M s'écrivent $x+k\times 2\pi=x+2k\pi$ où $k\in\mathbb{Z}$.

Exemple Un réel positif (resp. négatif) ayant le même point image sur le cercle que le réel $\frac{\pi}{4}$ est $\frac{\pi}{4}+2\pi=\frac{9\pi}{4}$ resp. $\frac{\pi}{4}-2\times 2\pi=-\frac{15\pi}{4}$

Bilan

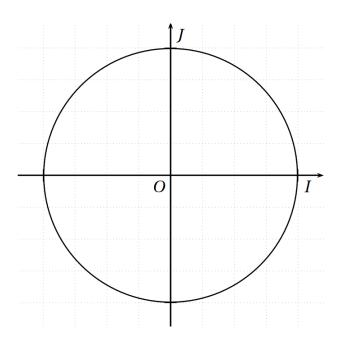


2.3 Cosinus et sinus d'un nombre réel

Définition Soit le repère orthonormé $(0; \vec{\imath}, \vec{j})$ et C le cercle trigonométrique de centre O. Soit M un point de C d'abscisse curviligne x, alors on appelle :

- (i) cosinus de x et on note $\cos x$ ou $\cos(x)$ de M dans le repère $(0; \vec{l}, \vec{j})$ l'abscisse du point M.
- (ii) sinus de x et on note $\sin x$ ou $\sin(x)$ de M dans le repère $(0; \vec{l}, \vec{j})$ l'ordonné du point M.

Figure



Quelques rappels

Dans un triangle rectangle :

Propriété Soit le repère orthonormé $(0; \vec{\iota}, \vec{j})$ et C le cercle trigonométrique de centre O. $x \in [0; \frac{\pi}{2}]$. M est un point sur C d'abscisse curviligne x.

Alors, $\cos x = \cos \widehat{IOM}$ et $\sin x = \sin \widehat{IOM}$

Propriété Pour tout nombre *x* réel :

- (i) $-1 \le \cos x \le 1$ et $-1 \le \sin x \le 1$ (ii) Relation fondamentale $\cos^2 x + \sin^2 x = 1$ (iii) $\tan x = \frac{\sin x}{\cos x}$, pour $x \ne \frac{\pi}{2}$.

Valeurs remarquables

x	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	π
sin x	0	1	52	53	1	0
cos x	1	53/2	542	1/2	O	-1
tan x	0	1/53	1	53	Ø	0

Démonstration (pour $\frac{\pi}{3}$)

Cercle trigonométrique avec les valeurs trigonométriques

