Exercice 1

1) Ecrire sous forme algébrique les nombres complexes suivants :

- i^3 i^4 i^5 i^6 Exprimer en fonction de $n \in \mathbb{N}$, $z_n = i^n$
- 2) En posant, $j = -\frac{1}{2} + \frac{\sqrt{3}}{2}i$, calculer $1 + j + j^2$.

Exercice 2

Écrire chacun des nombres complexes sous forme algébrique.

$$\mathsf{a.}\ \frac{1}{2-\mathrm{i}}\,;$$

b.
$$\frac{1}{3+2i}$$
;

c.
$$\frac{1}{i}$$
;

d.
$$\frac{4}{1+i}$$
;

e.
$$\frac{2i}{1+3i}$$
;

f.
$$\frac{\mathrm{i}}{2-3\mathrm{i}}$$
;

g.
$$\frac{7+i}{3-2i}$$
;

h.
$$\frac{2-4i}{1+i}$$
;

i.
$$\frac{2+i}{1+i} + \frac{5}{1+3i}$$
.

Exercice 3

Soit les nombres complexes : $z_1 = \frac{3-i}{5+7i}$ et $z_2 = \frac{3+i}{5-7i}$.

Vérifier que $z_1 = \overline{z_2}$, et en déduire que $z_1 + z_2$ est réel et que $z_1 - z_2$ est imaginaire pur. Calculer $z_1 + z_2$ et $z_1 - z_2$.

Exercice 4

Soit z un nombre complexe non nul. Dire pour chacun des nombres complexes suivants, s'il est réel ou imaginaire pur. a. $A=z^2+\overline{z}^2$; b. $B=\frac{z-\overline{z}}{z+\overline{z}}$; c. $C=\frac{z^2-\overline{z}^2}{z\overline{z}+3}$.

a.
$$A=z^2+\overline{z}^2$$
 ;

b.
$$B = \frac{z - \overline{z}}{z + \overline{z}}$$
;

c.
$$C = \frac{z^2 - \overline{z}^2}{z\overline{z} + 3}$$

Exercice 5

Calculer le module des nombres complexes suivants :

a)
$$z = \frac{1+i}{3-4i}$$
 b) $z = (2+2i)(-1+i)$ c) $z = \frac{i(-1-i)}{-3+4i}$ d) $z = \frac{-4(2-i)}{2i(1+2i)}$

c)
$$z = \frac{i(-1-i)}{-3+4i}$$

d)
$$z = \frac{-4(2-i)}{2i(1+2i)}$$

Exercice 6

Ecrire sous forme trigonométrique les nombres complexes suivants :

•
$$z_1 = 3$$

•
$$z_2 = -4$$

$$z_3 = 2i$$

•
$$z_2 = -4$$
 • $z_3 = 2i$ • $z_4 = -1 + i$ • $z_5 = -\sqrt{3} + i$

•
$$z_5 = -\sqrt{3} + i$$

•
$$z_6 = -17$$

•
$$z_6 = -17$$
 • $z_7 = -6\sqrt{3} + 6i$ • $z_8 = 5i$ • $z_9 = \sqrt{6} + i\sqrt{2}$.

$$z_9 = \sqrt{6} + i\sqrt{2}.$$

Exercice 7

Soit z = 2 - 2i, $z_1 = 2 + 2i$ et $z_2 = -2$.

- 1. Donner la forme trigonométrique de ces trois nombres complexes.
- 2. Déterminer le module de $z \times z_1^2$ et z_2^3 .
- 3. En déduire le module puis la forme algébrique de $\frac{z \times z_1^2}{z_2^3}$.

Exercice 8

Le plan complexe est muni du repère orthonormal direct $(O; \vec{u}, \vec{v})$, d'unité graphique 2cm.

- 1. On considère le nombre complexe z dont l'écriture trigonométrique est $z=3\left(\cos\left(\frac{2\pi}{3}\right)+\mathrm{i}\sin\left(\frac{2\pi}{3}\right)\right)$.
 - a. Donner le module et un argument de z.
 - b. Placer le point M d'affixe z.

 On laissera les traits de construction.
 - c. Déterminer la forme algébrique de z.
- 2. Soit $z_1=\sqrt{2}-\mathrm{i}\sqrt{2}$ et $z_2=-\sqrt{2}-\mathrm{i}\sqrt{6}$. Écrire z_1 et z_2 sous forme trigonométrique.

Exercice 9

Dans le plan complexe, A, B et C sont les points d'affixes :

$$z_A = 1 + i$$
, $z_B = 4 + 5i$, $z_C = 5 - 2i$.

- 1. Montrer que AB = AC.
- 2. a) Déterminer l'affixe du point G tel que le quadrilatère AGBC soit un parallélogramme.
 - b) Déterminer les affixes des points I et J, milieux respectifs de [GC] et [AB].

Exercice 10

Dans le plan complexe muni d'un repère othonormé direct $(0; \vec{u}, \vec{v})$, on considère les points A, B, C et D d'affixes respectives : $z_A = 5 + 5i$, $z_B = 5 - 5i$, $z_C = z_A + z_B$ et $z_D = 5$.

- 1. Placer les points A, B, C et D (on prendra comme unité graphique 1cm).
- 2. Déterminer le module et un argument de z_A , z_B et z_C .
- 3. Déterminer, en justifiant, la nature du quadrilatère OACB.
- 4. a) Que représente le point D pour le quadrilatère OACB?
- b) Démontrer votre affirmation précedente.

Exercice 11

Soit les nombres complexes $z_1 = -1 - i\sqrt{3}$ et $z_2 = iz_1$.

- 1. Ecrire z_1 sous forme algébrique.
- 2. a) Calculer le module et un argument de z_1 et de z_2 .
 - b) Placer dans le plan complexe muni d'un repère orthonormal $(O; \vec{u}, \vec{v})$ les points M_1 et M_2 d'affixes z_1 et z_2 .
 - c) Soit A, B et C les points du plan d'affixes respectives z_A , z_B et z_C telles que $z_A = -2 + 2i\sqrt{3}$, $z_B = 2 2i\sqrt{3}$ et $z_C = 8$.

Montrer que $z_A = 2\overline{z_1}$ et que $z_B = -z_A$.

- 3. a) Placer les points A, B et C dans le plan complexe.
 - b) Calculer $|z_A z_B|$, $|z_B z_C|$ et $|z_A z_C|$.
 - c) En déduire que le triangle ABC est rectangle.